W BazelCon

Building a great web
application development
experience with Bazel

Y= | Pejman Ghorbanzade (he/him)
e) ’ Staff Software Engineer, Aurora Innovation

Developer

Productivity

Performance Simplicity

Tools and processes continuously Tools and processes are designed with
provide short feedback cycles so the right level of abstraction so that

that developers can iterate quickly. developers can work effortlessly.

Web Development
Ecosystem

e Developer-friendly tools

e Short build and development cycles
e Hot module replacement

e Fast test execution

e Easy Dependency management

e Intuitive deployment process

Graz Art-Museum

“Wouldn’t we be better
off

without Bazel?”

— esteemed co-worker

About Me

Staff Software Engineer at Aurora Innovation
Building tooling to improve developer productivity
8+ years of professional experience

Ex founder of a developer tools startup

Ex Canon Medical Informatics

Ex VMware Carbon Black

About Aurora

Delivering the benefits of self-driving

technology, safely, quickly and broadly.

We are hiring!

Credits: Aurora Innovation

Diverse and
Fast Growing

e 300k+ build targets

e 50k+ Cljobs per day

e 700k+ remote executed actions per week
e 96% cache hit rate

e 40+ web applications

Credits: Aurora Innovation

Inconsistency
Fosters
Complexity

e Build Logic
e Code Quality
e Testing Practices

e Development Style

Developer
Productivity
Survey

Aurora web developers used to lose

240 hours per month to slow builds.

Slow Bazel
Build

Bazel
Complexity

Dependency
Management

Static Analysis

Deployment
Process

Hot Module
Replacement

Local
Debugging

Bundle Size

Documentation

IDE Support

0

Hours lost per month

50

100

150

200

250

Performance

Build Performance Profiling

e Using JSON Trace Profiling for profiling build time of specific targets
e Using bazel analyze-profile for reporting performance of specific build phases
e Using chrome://tracing for visualizing build profiles and identifying bottlenecks

e Using internal tools to continuously monitor changes to build performance

S bazel clean --expunge

S bazel build //my/app:bundle

--generate_json_trace_profile

--profile “my_app.profile.gz”

--noremote_accept_cached

--noslim_profile

- -exX

-—-eX

erimental _

erimental _

brofile_includ

brofile_includ

\
\
\
\

\
e_primary_output \

e_target_label

S bazel analyze-profile my_app.profile.gz

Launch phase time 1.086 s 0.90%
Init phase time 34.902 s 29.03%
Evaluation phase time 0.961 s 0.80%
Analysis phase time 30.050 s 25.00%
Preparation phase time 0.052 s 0.04%
Execution phase time 53.129 s 44.20%
Finish phase time 0.031 s 0.03%

Total run time 120.213 s 100.00%

Critical Path 0 ‘Linking visu il action 'WebpackCli visualization/lightbox/dist'
| Par buildTargets J
runAnalysisPhase |
Main Thread 21 skyframeExecutor.configureTa... Parallel Evaluator evaluation

Parallel Evaluator evaluation

‘ WP //external:emscripten

_download_and_extrac...

skyframe-evaluator-3 740 I NI}|
HLLL |
|

‘ HIINITIII fll-l A

skyframe-evaluator 4 833 | | .
IH IIWHE i
INIIIII Il . Him

skyframe-evaluator 13 842

| | \ [mn i1m
P

ActionContinuation.execute

r > 14
skyframe-evaluator 14 843 | OB
1 A
|| ||| Linking ui/libraries/panora.. WebpackCli visualization/lightbox/dist

‘ ActionContinuation.execute ActionContinuation.execute

skyframe-evaluator 65 894 subprocess.run

action count action

CPU usage (Bazel) cpu

CPU usage (total) system cpu

N
~
N
N

Memory usage (Bazel) memory

Memory usage (total) system mem QET
_ L

Findings

Webpack

Transpiling and type
checking TypeScript with
TSC and in Webpack is
extremely inefficient.

Cache Points

Creating extra cache points
significantly improves
Incremental builds and
development server times.

Dependencies

Updating dependencies and
reducing bundle size can
noticeably improve build
performance.

Road Runner

® as

® as

nect-build/rules_ts

pect-

e aspect-

ouilc

ouilc

e swc-loader

e @swc/jest
e minimal BUILD file

/rules_swc

/rules_webpack

e toolchain packages

Performance Impact

Clean Build Time Incremental Build Time Test Execution Time
2.5min 50s 1.5min
t'ime> t'ime> time>
Development Server Start Time Development Server Reload Time Bundle Size
27s 4s 14MB

m N n 5
time

time

2.
t'ime>

Under The Hood

2x faster build times 3x shorter feedback cycles

e Using ts_project to transpile TypeScript e Passing TypeScript source files to
source files with SWC and type-check enable hot module replacement using
them with TSC. Ibazel and swc-loader.

e Using rules webpack to invoke e Using @swc/jest transformer for faster
webpack for bundling JavaScript output test execution and rules_jest to enable

using swc-loader. test sharding with Bazel.

rLI|eS_t82 ts_project(
ts_projeCt name = "dependencies”,

SI'CS = SIcCsS,

deps = deps,

e \alidates tsconfig.json and ensures that
assets = assets,

ndenci re Tslnfo providers. :
dependencies are TsInfo providers declaration = True,

e Transpiles TypeScript files using TSC or a extends = "//ts_config_base",

custom transpiler. transpiler = "tsc",

e Performs type-checking using TSC and **kwargs

outside of critical path.

rU|eS_SWC1 ts_project(
tra nspiling name = "dependencies”,

Srcs = srcs,
oL

transpiler = partial.make(

e Extensible JavaScript transpiler written in

Rust and designed for speed.
swc,

e Suitable for use with Bazel in numerous swere = "//: .swerc”

short-lived invocations.),

e Allows using custom bundlers like **kwargs

Webpack and Rollup.

rules_ts: type checking

Type checking is incredibly slow relative to transpiling but done outside critical path.
ts_project targets in any dependency tree are type-checked serially.
isolatedDeclarations may enable faster type-checking in the future.

Most developers could rely on their IDE for type checking during development.

tsconfig.json
compiler options

e isolatedModules: Allows separate
processing of source files for faster

transpiling.

e skipLibCheck: Allows skipping type
checking of declaration files in transitive

dependencies.

// tsconfig.json

"compilerOptions”: {

"declaration”: true,
"isolatedModules”: true,
"skipLibCheck"”: true,

"strict”: true,
//...

rules_webpack:
webpack _bundle

webpack_bundle(

name = name,
args = args,
configure_devtool = False,

e Improves remote caching by producing configure_mode = False,

deterministic file hashes and module ids output_dir = True,

node_modules = "@//:node_modules”,

e Enables hermetic builds by enforcing tags = tags

unique name for produced output webpack_config = webpack_config,

**kwargs

swc-loader
Webpack Plugin

test: /\.m?jsS/,

exclude: /(node_modules)/,

use: {

e Up to 3x faster build times. lesdare ' ana—lescan.

e drop-in replacement for ts-loader options: swcConfig

e Can use the same .swcrc configuration file)

used by ts_project.

tags.append("ibazel_notify_changes")

rules_webpack:
webpack_devserver

webpack_devserver (
name = name,
args = args,
configure_devtool = False,

e Up to 3x faster reload times. configure_mode = False,

. data = data,
e Uses|s run_devserver under the hood.
node_modules = "@//:node_modules”,

e Enables hot reloading and hot module tags = tags,
replacement using iBazel webpack_config = webpack_config,

**kwargs

// webpack.base.config.ts

module: {
defaultRules: |

swcLoaderRule(/\.m?jsS/, swcConfig),

{ test: /\.(png|svg|etc)/, type: 'asset/inline' },
...(IS_DEV ? [swcLoaderRule(/\.tsx?S/, swcConfig)] : []),

I

@swc/jest

Up to 5x faster test execution
Almost drop-in replacement for ts-jest
Different handling of mocking functions

Does not perform type checking

// jest.config.js

module.exports = {
/] ...

transform: {

A H\NL(j|t)sx?S': '@swc/jest’,

jest_test(

name = "test"’,

o
rU|eS_jeSt config = ":jest.config.js",
data = |

"foo.ts",

e Supports bazel sharding "foo.test.ts”,

e Supports snapshot testing bar.test.ts

I

e Slightly better caching node_modules = "@//:node_modules”,

e Requires Node 18 shard_count

S bazel run

e2e test

Running 4 tests using 4 workers

v 1 [chromium]
v 2 [chromium]
v 3 [chromium]
v 4 [chromium]

4 passed (9.0s)

example.
example.
example.

example.

spec
spec
spec

spec

. TS
. TS
. TS
. TS

:24:5 > home page (3.1s)
:33:5 > log id (8.2s)

:9:5 » has title (1.6s)
:14:5 > help dialog (7.2s)

Simplicity

Design Principles

No Paradigm Shift Easy Rollout Minimal Interface
Adoption should be seamless Adoption should be easy, Adoption should involve
without changing everyday with minimal risk of establishing consistent

development workflow. introducing regressions. conventions.

Minimal Interface

e Reducing Friction

e Reducing Complexity

e Reducing Maintenance Cost
e Reducing Migration Cost

e Enforcing Best Practices

load("//my/rules:js.bzl", "my_web_app")

my_web_app(
hame = "myapp",
assets = ["config/.env*"],
srcs = ["src/**"],
tests = ["src/tests/**"],

deps = ["//ui/libraries/mylib"],

Abstract BUILD file

e (Generates ts project target for transpiling and type-checking

e (Generates webpack bundle target for building web applications for production
e (Generates webpack devserver target for running development server

e (enerates jest_test target for running unit tests

e (enerates playwright_test target for running end-to-end tests

e (enerates other targets for packaging and deployment

Managing e v
Dependencies "version”: "8.1.8",

. . "private”: true,
with package.json dependencies” : {

"clsx": "42.0.0",

"nanoid”: "*4.0.2",
"react”: "718.2.0",

"react-dom”: "718.2.0",

e Meets developers where they are
e Eliminates paradigm shift
e Enforces conventions and best practices

"react-icons”: "%4.10.1°"
e Facilitates traceability and future upgrades

generate_package_json_targets(

name = "my_js_package_json",

package_json_files my_package_json_files(),

def package_json_dependencies():
deps = NPM_DEPENDENCIES["//" + native.package_name()]
it deps == None:
fail("intuitive error message")

return deps

Abstracting

o def my_web_app(name, **kwargs):
Toolchailn .
Dependencies deps = kwargs.pop("deps”, [1)

deps.append("//tools/build/webpack")

ts_project(
e casier rollout of improvements name = "dependencies”
e casier upgrading of toolchain components deps = deps,
e casier performance impact measurements # ...

e controlled customization points

Conclusion

Performance Simplicity
Enabling fast feedback cycles requires Building a great developer experience
choosing build toolchain components requires a build process that is intuitive

that play nicely with Bazel. and almost invisible.

W BazelCon

Thank you!

pejman.dev / talks / bazelcon23

https://pejman.dev/talks/bazelcon23

