
Building a great web
application development
experience with Bazel

Pejman Ghorbanzade (he/him)
Staff Software Engineer, Aurora Innovation

Developer
Productivity

Tools and processes continuously

provide short feedback cycles so

that developers can iterate quickly.

SimplicityPerformance
Tools and processes are designed with

the right level of abstraction so that

developers can work effortlessly.

● Developer-friendly tools

● Short build and development cycles

● Hot module replacement

● Fast test execution

● Easy Dependency management

● Intuitive deployment process

Web Development
Ecosystem

Graz Art Museum

“Wouldn’t we be better
off

without Bazel?”
— esteemed co-worker

About Me
Staff Software Engineer at Aurora Innovation

Building tooling to improve developer productivity

8+ years of professional experience

Ex founder of a developer tools startup

Ex Canon Medical Informatics

Ex VMware Carbon Black

About Aurora

Delivering the benefits of self-driving

technology, safely, quickly and broadly.

We are hiring!

Credits: Aurora Innovation

Diverse and
Fast Growing

● 300k+ build targets

● 50k+ CI jobs per day

● 700k+ remote executed actions per week

● 96% cache hit rate

● 40+ web applications

Credits: Aurora Innovation

● Build Logic

● Code Quality

● Testing Practices

● Development Style

Inconsistency
Fosters
Complexity

Credits: Delphine de La Potterie

Aurora web developers used to lose

240 hours per month to slow builds.

Developer
Productivity
Survey

Performance

Build Performance Profiling

● Using JSON Trace Profiling for profiling build time of specific targets

● Using bazel analyze-profile for reporting performance of specific build phases

● Using chrome://tracing for visualizing build profiles and identifying bottlenecks

● Using internal tools to continuously monitor changes to build performance

$ bazel clean --expunge

$ bazel build //my/app:bundle \

 --generate_json_trace_profile \

 --profile “my_app.profile.gz” \

 --noremote_accept_cached \

 --noslim_profile \

 --experimental_profile_include_primary_output \

 --experimental_profile_include_target_label

$ bazel analyze-profile my_app.profile.gz

Launch phase time 1.086 s 0.90%

Init phase time 34.902 s 29.03%

Evaluation phase time 0.961 s 0.80%

Analysis phase time 30.050 s 25.00%

Preparation phase time 0.052 s 0.04%

Execution phase time 53.129 s 44.20%

Finish phase time 0.031 s 0.03%

--

Total run time 120.213 s 100.00%

Findings

Transpiling and type
checking TypeScript with
TSC and in Webpack is
extremely inefficient.

Creating extra cache points
significantly improves
incremental builds and
development server times.

Webpack Cache Points

Updating dependencies and
reducing bundle size can
noticeably improve build
performance.

Dependencies

● aspect-build/rules_ts

● aspect-build/rules_swc

● aspect-build/rules_webpack

● swc-loader

● @swc/jest

● minimal BUILD file

● toolchain packages

Road Runner

Performance Impact

● Passing TypeScript source files to
enable hot module replacement using
ibazel and swc-loader.

● Using @swc/jest transformer for faster
test execution and rules_jest to enable
test sharding with Bazel.

● Using ts_project to transpile TypeScript
source files with SWC and type-check
them with TSC.

● Using rules_webpack to invoke
webpack for bundling JavaScript output
using swc-loader.

Under The Hood
2x faster build times 3x shorter feedback cycles

rules_ts:
ts_project

● Validates tsconfig.json and ensures that

dependencies are TsInfo providers.

● Transpiles TypeScript files using TSC or a

custom transpiler.

● Performs type-checking using TSC and

outside of critical path.

Credits: Aurora Innovation

ts_project(

 name = "dependencies",

 srcs = srcs,

 deps = deps,

 assets = assets,

 declaration = True,

 extends = "//ts_config_base",

 transpiler = "tsc",

 **kwargs

)

● Extensible JavaScript transpiler written in

Rust and designed for speed.

● Suitable for use with Bazel in numerous

short-lived invocations.

● Allows using custom bundlers like

Webpack and Rollup.

rules_swc:
transpiling

Credits: Aurora Innovation

ts_project(

 name = "dependencies",

 srcs = srcs,

 # ...

 transpiler = partial.make(

 swc,

 swcrc = "//:.swcrc"

),

 **kwargs

)

Credits: Aurora Innovation

rules_ts: type checking

● Type checking is incredibly slow relative to transpiling but done outside critical path.

● ts_project targets in any dependency tree are type-checked serially.

● isolatedDeclarations may enable faster type-checking in the future.

● Most developers could rely on their IDE for type checking during development.

tsconfig.json
compiler options

● isolatedModules: Allows separate

processing of source files for faster

transpiling.

● skipLibCheck: Allows skipping type

checking of declaration files in transitive

dependencies.

Credits: Aurora Innovation

// tsconfig.json

{

 "compilerOptions": {

 "declaration": true,

 "isolatedModules": true,

 "skipLibCheck": true,

 "strict": true,

 //...

 }

}

rules_webpack:
webpack_bundle

Credits: Aurora Innovation

● Improves remote caching by producing

deterministic file hashes and module ids

● Enables hermetic builds by enforcing

unique name for produced output

webpack_bundle(

 name = name,

 args = args,

 configure_devtool = False,

 configure_mode = False,

 output_dir = True,

 node_modules = "@//:node_modules",

 tags = tags,

 webpack_config = webpack_config,

 **kwargs

)

● Up to 3x faster build times.

● drop-in replacement for ts-loader

● Can use the same .swcrc configuration file

used by ts_project.

swc-loader
Webpack Plugin

Credits: Aurora Innovation

{

 test: /\.m?js$/,

 exclude: /(node_modules)/,

 use: {

 loader: 'swc-loader',

 options: swcConfig,

 },

}

rules_webpack:
webpack_devserver

Credits: Aurora Innovation

tags.append("ibazel_notify_changes")

webpack_devserver(

 name = name,

 args = args,

 configure_devtool = False,

 configure_mode = False,

 data = data,

 node_modules = "@//:node_modules",

 tags = tags,

 webpack_config = webpack_config,

 **kwargs

)

● Up to 3x faster reload times.

● Uses js_run_devserver under the hood.

● Enables hot reloading and hot module

replacement using iBazel

// webpack.base.config.ts

module: {

 defaultRules: [

 swcLoaderRule(/\.m?js$/, swcConfig),

 { test: /\.(png|svg|etc)/, type: 'asset/inline' },

 ...(IS_DEV ? [swcLoaderRule(/\.tsx?$/, swcConfig)] : []),

],

}

@swc/jest

Credits: Aurora Innovation

// jest.config.js

module.exports = {

 // ...

 transform: {

 '^.+\\.(j|t)sx?$': '@swc/jest',

 }

};

● Up to 5x faster test execution

● Almost drop-in replacement for ts-jest

● Different handling of mocking functions

● Does not perform type checking

rules_jest

● Supports bazel sharding

● Supports snapshot testing

● Slightly better caching

● Requires Node 18

Credits: Aurora Innovation

jest_test(

 name = "test",

 config = ":jest.config.js",

 data = [

 "foo.ts",

 "foo.test.ts",

 "bar.test.ts"

],

 node_modules = "@//:node_modules",

 shard_count = 2,

)

$ bazel run :e2e test

Running 4 tests using 4 workers

 ✓ 1 [chromium] › example.spec.ts:24:5 › home page (3.1s)

 ✓ 2 [chromium] › example.spec.ts:33:5 › log id (8.2s)

 ✓ 3 [chromium] › example.spec.ts:9:5 › has title (1.6s)

 ✓ 4 [chromium] › example.spec.ts:14:5 › help dialog (7.2s)

 4 passed (9.0s)

Simplicity

Design Principles

Adoption should be seamless
without changing everyday
development workflow.

Adoption should be easy,
with minimal risk of
introducing regressions.

No Paradigm Shift Easy Rollout

Adoption should involve
establishing consistent
conventions.

Minimal Interface

● Reducing Friction

● Reducing Complexity

● Reducing Maintenance Cost

● Reducing Migration Cost

● Enforcing Best Practices

Minimal Interface

load("//my/rules:js.bzl", "my_web_app")

my_web_app(

 name = "myapp",

 assets = ["config/.env*"],

 srcs = ["src/**"],

 tests = ["src/tests/**"],

 deps = ["//ui/libraries/mylib"],

)

Abstract BUILD file
● Generates ts_project target for transpiling and type-checking

● Generates webpack_bundle target for building web applications for production

● Generates webpack_devserver target for running development server

● Generates jest_test target for running unit tests

● Generates playwright_test target for running end-to-end tests

● Generates other targets for packaging and deployment

● Meets developers where they are

● Eliminates paradigm shift

● Enforces conventions and best practices

● Facilitates traceability and future upgrades

Credits: Aurora Innovation

{

 "name": "myapp",

 "version": "0.1.0",

 "private": true,

 "dependencies": {

 "clsx": "^2.0.0",

 "nanoid": "^4.0.2",

 "react": "^18.2.0",

 "react-dom": "^18.2.0",

 "react-icons": "^4.10.1"

 }

}

Managing
Dependencies
with package.json

generate_package_json_targets(

 name = "my_js_package_json",

 package_json_files = my_package_json_files(),

)

def package_json_dependencies():

 deps = NPM_DEPENDENCIES["//" + native.package_name()]

 if deps == None:

 fail("intuitive error message")

 return deps

Abstracting
Toolchain
Dependencies

● easier rollout of improvements

● easier upgrading of toolchain components

● easier performance impact measurements

● controlled customization points

Credits: Aurora Innovation

def my_web_app(name, **kwargs):

 # ...

 deps = kwargs.pop("deps", [])

 deps.append("//tools/build/webpack")

 ts_project(

 name = "dependencies",

 deps = deps,

 # ...

)

Building a great developer experience

requires a build process that is intuitive

and almost invisible.

Enabling fast feedback cycles requires

choosing build toolchain components

that play nicely with Bazel.

Conclusion
Performance Simplicity

Thank you!

pejman.dev / talks / bazelcon23

https://pejman.dev/talks/bazelcon23

