
1 Aurora Innovation

https://aurora.tech/

Continuous Regression Testing
for Safer and Faster Refactoring

Pejman Ghorbanzade
Aurora Innovation

3 Aurora Innovation

Engineers spend 17 hours per week maintaining software.

*Stripe 2019 Developer Coefficient Report

https://aurora.tech/
https://drive.google.com/file/d/1jO1v0qxvAWzdFq7dl82di8V4pSbcaLsB/view?usp=sharing

4 Aurora Innovation

Maintaining Software

Reading

Refactoring

Upgrading

Migrating

Debugging

Adding tests

Writing documentation

Resolving technical debt

“The only constant in life is change.” - Heraclitus

https://aurora.tech/

5 Aurora Innovation

Types of Change

Fixing a defect

Enabling code reuse

Adjusting to new expectations

Improving a function implementation

Upgrading a third-party dependency

Renaming a function or variable

Changing system configuration

Updating build system toolchain

“Software engineering is programming integrated over time.” - Titus Winters

https://aurora.tech/

6 Aurora Innovation

It takes 23 days for software engineers to gain
confidence that a code change works as expected.

*Tricentis 2021 Report: How The World's Top Organizations Test

https://aurora.tech/
https://drive.google.com/file/d/1jN3PMwJUYInwglZiPLa8OKqLX60pjvo3/view

7 Aurora Innovation

Agenda

What is continuous regression testing

How does regression testing work in practice

How to build a regression testing system

Going beyond finding behavioral regressions

How to use regression testing effectively

Establishing a culture of safety at scale

https://aurora.tech/

8 Aurora Innovation

About Aurora

Delivering the benefits of self-

driving technology, safely,

quickly, and broadly.

aurora.tech/careers

https://aurora.tech/
https://aurora.tech/careers

9 Aurora Innovation

About Me

Staff Software Engineer at Aurora Innovation

Building tooling to improve developer experience

Accelerating the development of web applications

8 years of professional experience

Maintaining mission-critical software systems

Ex VMware Carbon Black, Canon Medical Informatics

Former founder of a developer tools startup
Pejman Ghorbanzade

pejman.dev

https://aurora.tech/
https://pejman.dev/

10 Aurora Innovation

What we do matters

Low-dose Ultra Helical CT Angiogram of the
Carotids and Circle of Willis for stroke work-up.

Clear visualization of contrast enhanced vessels and
surrounding soft tissue enables fast and confident
rule-out of occlusion.

Courtesy of Canon Medical Group

https://aurora.tech/
https://global.medical.canon/products/computed-tomography/aq_one_prism_cg_headneck

11 Aurora Innovation

Digital Imaging and Communications in Medicine

Group Element Tag name

0008 0020 Study date

0008 002A Acquisition DateTime

0010 0010 Patient’s name

0020 0013 Instance Number

0020 0020 Patient orientation

Courtesy of Canon Medical Group

https://aurora.tech/
https://global.medical.canon/products/computed-tomography/aq_one_prism_cg_headneck

12 Aurora Innovation

What could go wrong?

Incorrect interpolation and misrepresenting
image positions could result in inaccurate
measurements, causing patient harm.

Courtesy of Canon Medical Group

https://aurora.tech/
https://global.medical.canon/products/computed-tomography/aq_one_prism_cg_headneck

13 Aurora Innovation

Everything could go wrong

“The inherent complexity of the real world and the continuous change
of requirements result in large and complex software systems that are
costly and difficult to maintain.”

“In a sufficiently long time horizon, all possible behaviors of your system will occur.” - Hyrum's law (modified)

https://aurora.tech/

14 Aurora Innovation

Testing as risk mitigation

If every code change can break our software, how could we stay

productive and safely introduce frequent changes?

Implement high-level tests and continuously run them at scale to cover

real-world system behaviors with reasonable degree of confidence.

https://aurora.tech/

15 Aurora Innovation

Developer inner and outer loops

Fast feedback cycles boost development

confidence and productivity.

Moving high-level tests out of the developer loop

results in slow and inefficient application life-

cycles.

https://aurora.tech/

16 Aurora Innovation

The myth of the testing pyramid

Concerns Benefits

Difficult
costly to setup and run

Expressive
easy to read and modify

Expensive
need system deployment

Scalable
can run many test cases

Slow
take long to execute

Comprehensive
cover component interactions

Brittle
flaky and easy to break

Reassuring
provide more confidence "Write tests. Not too many. Mostly integration." - Guillermo Rauch

https://aurora.tech/
https://kentcdodds.com/blog/write-tests

17 Aurora Innovation

Continuous regression testing

Continuously verifying that the software works as well as before, during the development stage.

Testing for Correctness

Requires describing the expected behavior for each test

input.

Mismatches against the expected values indicate failure.

Tests are difficult to maintain, scale, and automate.

Testing for Regression

Treats a released version of software as baseline.

Mismatches against the baseline require justification.

Tests are expressive and decoupled from the test input.

https://aurora.tech/

18 Aurora Innovation

Higher-level tests in practice

Safely rewriting a critical data ingestion pipeline

500,000 +
lines of code

12,000 +
real-world datasets

10,000 +
attributes to verify

16,000 +
gigabytes of input data

https://aurora.tech/

19 Aurora Innovation

In-Memory Comparison

Test is difficult to setup

Test system is inefficient to run

Test system is not reuseable

50,000 +
LoC test framework

16 +
hours to run test

for (auto test_case: test_suite) {

 auto new_output = new_system(test_case);

 auto old_output = old_system(test_case);

 auto report = compare(new_output, old_output);
 report.store(test_case);

}

generate_summary_report();

https://aurora.tech/

20 Aurora Innovation

Snapshot Testing

Debugging
System is treated as a black box.
Output may miss important data.

Reliability
Output may include
nondeterministic data.

Data Management
Output is stored in version
control along with source code.

Reporting
Differences are difficult to
inspect, understand, and manage.

for (auto test_case: test_suite) {

 auto new_output = new_system(test_case);
 store_snapshot(test_case, new_output);

 auto old_output = load_snapshot(test_case);

 auto report = compare(new_output, old_output);

 report.store(test_case);

}
generate_summary_report();

https://aurora.tech/

21 Aurora Innovation

Problem: Debugging

Good tests point to the root cause when they fail.

https://aurora.tech/

22 Aurora Innovation

Problem: Reliability

Snapshot tests

are prone to capturing non-deterministic data.

are prone to capturing unimportant data.

may leave out changes not captured in the output.

fail to compare captured data in their original type.

Good tests pass and fail only when they are supposed to.

 The Alameda ALM 408-207-1126

 777 The Alameda

 San Jose, CA 95126
 CANTALOUPE $3.99 F

 Sale $3.32 -$0.67

 Prime Extra 10.00% -$0.33

 Subtotal: $3.99

 Total Savings: -$1.00
 Net Sales: $2.99

 Total: $2.99

 Sold Items: 1

**

 901 61797 09/15/2023 05:46 PM

https://aurora.tech/

23 Aurora Innovation

Problem: Data Management

Good test systems enable auditing how software evolves.

https://aurora.tech/

24 Aurora Innovation

Problem: Reporting

Good test systems report insights as output, not raw test results .

https://aurora.tech/

25 Aurora Innovation

Design Principles

Developer Friendly

Designed for everyday use by

developers. Should enable creating tests

that are cheap to write, fast to run, and

easy to modify.

Flexible

Designed for capturing values of

variables and runtime of functions.

Should handle data points with primitive

or user-defined data types.

Scalable

Designed for testing mission-critical

software. Should handle capturing data

from large number of test cases and

report test results as actionable insights.

https://aurora.tech/

26 Aurora Innovation

Rethinking snapshot testing

https://aurora.tech/

27 Aurora Innovation

About Touca

Find the unintended side-effects

of your day-to-day code changes

Trusted By:

Backed By:

https://aurora.tech/

28 Aurora Innovation

Agenda

What is continuous regression testing

How does regression testing work in practice

How to build a regression testing system

Going beyond finding behavioral regressions

How to use regression testing effectively

Establishing a culture of safety at scale

https://aurora.tech/

29 Aurora Innovation

Touca Server

Remotely compare the output of

your software against a previous

baseline version.

Free and Open Source

Developer Friendly

Language Agnostic

Battle Tested

https://aurora.tech/

30 Aurora Innovation

Self-hosting

github.com / trytouca

$ brew install touca

$ touca server install

Apache 2.0 License

https://aurora.tech/
https://github.com/trytouca/trytouca

31 Aurora Innovation

Test Framework

Parses command-line arguments

Retrieves test cases

Submits captured data

Reports test progress

Handles any errors

https://aurora.tech/

32 Aurora Innovation

Writing tests

Test your complex software

workflows for any number of

inputs by capturing values of

variables and runtime of functions.

https://aurora.tech/

33 Aurora Innovation

Running tests

Run your tests for each code change or pull request, as

part of CI or on a dedicated test machine, to get fast

feedback during the development stage.

$ brew install touca

$ touca login

$ touca test

https://aurora.tech/

34 Aurora Innovation

Automating tests

Integrate your tests with the

CI/CD pipeline to automate their

execution and receive feedback

when you need it.

https://aurora.tech/

35 Aurora Innovation

Visualizing differences

Automatically compare new test

results and visualizing inspect

potential differences against your

baseline.

Automatic and on-demand comparison

Overall insights and summary reports

Custom comparison rules

https://aurora.tech/

36 Aurora Innovation

Comparing images and videos

Share test results with team

members and visualize differences

of any kind.

https://aurora.tech/

37 Aurora Innovation

Finding performance regressions

Gain insights and analytics about

how your software is evolving over

time.

https://aurora.tech/

38 Aurora Innovation

Reporting Results

Subscribe to any suite to get

notified about new regressions.

https://aurora.tech/

39 Aurora Innovation

Baseline Management

Collaborate with your team

members in investigating

regressions and managing baseline

versions.

https://aurora.tech/

40 Aurora Innovation

Agenda

What is continuous regression testing

How does regression testing work in practice

How to build a regression testing system

Going beyond finding behavioral regressions

How to use regression testing effectively

Establishing a culture of safety at scale

https://aurora.tech/

41 Aurora Innovation

System Architecture

https://aurora.tech/

42 Aurora Innovation

C++ SDK

GCC
9.4.0

Clang
11.0.0

MSVC
1900

C++11 through C++23

CMake
3.14

Conan
v1

Bazel
v6.3.2

touca.io/docs/sdk/installing

https://aurora.tech/
https://touca.io/docs/sdk/installing

43 Aurora Innovation

Data Capturing API

touca::workflow("students", [](const std::string& username) {

 const auto& student = find_student(username);

 touca::check("name", student.name);

 touca::check("birth_date", student.dob);

 touca::check("gpa", student.gpa);
});

struct Date {

 unsigned short year;
 unsigned short month;

 unsigned short day;

};

template <typename Char, typename Value>

void check(Char&& key, const Value& value) {

 touca::detail::check(std::forward<Char>(key),

 serializer<Value>().serialize(value));

}

https://aurora.tech/

44 Aurora Innovation

Capturing behavior data

touca::log("timestamp", student.created_at); touca::assume("username", student.username);

for (const auto& course : student.courses) {

 touca::add_array_element("courses", course);
 touca::add_hit_count("number of courses");

}

void Client::check(const std::string& key, const data_point& value) {

 if (has_last_testcase()) {

 _testcases.at(get_last_testcase())->check(key, value);

 }

}

https://aurora.tech/

45 Aurora Innovation

Capturing performance data

touca::start_timer("find_student");

const auto& student = find_student(username);

touca::stop_timer("find_student");

Student find_student(const std::string& username) {

 touca::scoped_timer timer("find_student");

 // ...

}

with touca.scoped_timer("find_student"):
 student = find_student(username)

touca::add_metric("external_source", 1500);

https://aurora.tech/

46 Aurora Innovation

Data Serialization

Partial Template Specialization

template <typename T, typename = void>

struct serializer {

 data_point serialize(const T& value) {

 static_assert(std::is_same<data_point, T>::value,

 "did not find any specialization of "
 "serializer for the given type");

 return static_cast<T>(value);

 }

};

https://aurora.tech/

47 Aurora Innovation

Data Serialization

Specializing Standard Types

template <typename T>

using is_number_signed =

 conjunction<negation<std::is_same<T, bool>>,
 std::is_integral<T>,

 std::is_signed<T>>;

template <typename T>

struct serializer<

 T, enable_if_t<is_number_signed<T>::value>> {

 data_point serialize(const T& value) {
 return data_point::number_signed(value);

 }

};

enum class internal_type : std::uint8_t {

 null,

 object,

 array,
 string,

 boolean,

 number_signed,

 number_unsigned,

 number_float,
 number_double,

 unknown

};

https://aurora.tech/

48 Aurora Innovation

Data Serialization

Specializing User-Defined Types

template <>

struct serializer<Date> {

 data_point serialize(const Date& date) {

 return object("Date")

 .add("year", date.year)
 .add("month", date.month)

 .add("day", date.day);

 }

};

https://aurora.tech/

49 Aurora Innovation

Data Serialization

Deeper Dive

pejman.dev/talks/cppcon21

https://aurora.tech/
https://pejman.dev/talks/cppcon21

50 Aurora Innovation

Data Submission

Low-Level API

touca::workflow("students", [](const std::string& username) {
 const auto& student = find_student(username);
 touca::check("name", student.name);
 touca::check("birth_date", student.dob);
 touca::check("gpa", student.gpa);
});

Post::Status ClientImpl::post() const {
 /** ... */
 const auto& buf = Testcase::serialize(testcases);
 std::string content((const char*)buf.data(), buf.size());
 const auto& response = transport->binary(content);
 /** ... */
}

int main() {
 touca::configure();
 for (const auto& username : {"alice", "bob", "charlie"}) {
 touca::declare_testcase(username);
 const auto& student = find_student(username);
 touca::check("name", student.name);
 touca::check("birth_date", student.dob);
 touca::check("gpa", student.gpa);

 touca::post();
 touca::save_binary("touca_" + username + ".bin");
 touca::save_json("touca_" + username + ".json");
 touca::forget_testcase(username);
 }
 touca::seal();
}

https://aurora.tech/

51 Aurora Innovation

Data Submission

FlatBuffers Schema

union Type {

 Bool,

 Int,

 /** ... */

 String,

 Object,

 Array

}

table TypeWrapper {

 value:Type;

}

table Result {

 key:string;

 value:TypeWrapper;

}

table Results {

 entries:[Result];

}

table Message {

 metadata:Metadata;

 results:Results;

 metrics:Metrics;

}

table MessageBuffer {

 buf:[uint8] (nested_flatbuffer: "Message");

}

table Messages {

 messages:[MessageBuffer];

}

root_type Messages;

https://aurora.tech/

52 Aurora Innovation

Data ingestion w/ async processing

https://aurora.tech/

53 Aurora Innovation

Data ingestion w/ on-demand processing

https://aurora.tech/

54 Aurora Innovation

Data Retention

Local Filesystem Backup Configurable Retention Duration

https://aurora.tech/

55 Aurora Innovation

Agenda

What is continuous regression testing

How does regression testing work in practice

How to build a regression testing system

Going beyond finding behavioral regressions

How to use regression testing effectively

Establishing a culture of safety at scale

https://aurora.tech/

56 Aurora Innovation

Custom comparison rules

Language Agnostic Real-Time Feedback

3.8
Actual value
Version v5.1 3.9

Previous value
Version v2.0

Value passes minimum threshold of 3.

touca::check("gpa", student.gpa, touca::decimal_rule::min_absolute(3));

https://aurora.tech/

57 Aurora Innovation

Tracking performance benchmarks

$ touca plugin add plugins://google_benchmark
$ touca google_benchmark output.json

#include <benchmark/benchmark.h>

static void BM_String(benchmark::State& state) {

 for (auto _ : state)

 std::string empty_string;

}

BENCHMARK(BM_String);

BENCHMARK_MAIN();

{

 "context": {

 "date": "2023/09/25-18:40:25",

 "num_cpus": 40,

 "mhz_per_cpu": 2801,
 "cpu_scaling_enabled": false,

 "build_type": "debug"

 },

 "benchmarks": [

 {
 "name": "BM_String",

 "iterations": 94877,

 "real_time": 29275,

 "cpu_time": 29836,

 "bytes_per_second": 134066,
 "items_per_second": 33516

 }

]

}

https://aurora.tech/

58 Aurora Innovation

Profiling build times

$ touca plugin add plugins://bazel
$ touca bazel sample_app.profile.gz

$ bazel build :sample_app --generate_json_trace_profile \

 --profile sample_app.profile.gz --noslim_json_profile

$ bazel analyze-profile sample_app.profile.gz

=== PHASE SUMMARY INFORMATION ===

Total launch phase time 0.014 s 0.42%

Total init phase time 0.048 s 1.46%

Total target pattern evaluation phase time 0.006 s 0.19%

Total interleaved loading-and-analysis phase time 0.153 s 4.64%

Total preparation phase time 0.001 s 0.05%

Total execution phase time 3.084 s 93.19%

Total finish phase time 0.001 s 0.03%

Total run time 3.309 s 100.00%

https://aurora.tech/

59 Aurora Innovation

Profiling the size of binaries

$ touca plugin add plugins://bloaty
$ touca bloaty ./bloaty

$./bloaty bloaty -d compileunits

 FILE SIZE VM SIZE

 -------------- --------------

 57.5% 17.4Mi 68% 4.60Mi [175 Others]

 17.2% 5.08Mi 4.3% 295Ki third_party/protobuf/src/google/protobuf/descriptor.cc

 7.3% 2.14Mi 2.6% 179Ki third_party/protobuf/src/google/protobuf/descriptor.pb.cc

 4.6% 1.36Mi 1.1% 78.4Ki third_party/protobuf/src/google/protobuf/text_format.cc

 3.7% 1.10Mi 4.5% 311Ki third_party/capstone/arch/ARM/ARMDisassembler.c

 1.3% 399Ki 15.9% 1.07Mi third_party/capstone/arch/M68K/M68KDisassembler.c

 3.2% 980Ki 1.1% 75.3Ki third_party/protobuf/src/google/protobuf/generated_message_reflection.cc

 3.2% 965Ki 0.6% 40.7Ki third_party/protobuf/src/google/protobuf/descriptor_database.cc

 1.8% 549Ki 1.7% 114Ki src/bloaty.cc

 100.0% 29.5Mi 100.0% 6.69Mi TOTAL

https://aurora.tech/

60 Aurora Innovation

Tracking exported symbols of a shared library

$ touca plugin add plugins://cpp_symbols

$ touca cpp_symbols ./my.dylib --filter touca

$ nm -gU ./my.dylib | grep touca

000000000006ad64 T __ZNK5touca8Testcase11flatbuffersEv

000000000006a514 T __ZNK5touca8Testcase4jsonEv

000000000006a358 T __ZNK5touca8Testcase7metricsEv

0000000000069508 T __ZNK5touca8Testcase8Metadata4jsonEv
0000000000069370 T __ZNK5touca8Testcase8Metadata8describeEv

00000000000691b0 T __ZNK5touca8Testcase8Overview4jsonEv

0000000000069310 T __ZNK5touca8Testcase8metadataEv

000000000006b9ec T __ZNK5touca8Testcase8overviewEv

https://aurora.tech/

61 Aurora Innovation

Agenda

What is continuous regression testing

How does regression testing work in practice

How to build a regression testing system

Going beyond finding behavioral regressions

How to use regression testing effectively

Establishing a culture of safety at scale

https://aurora.tech/

62 Aurora Innovation

A roller coaster story

"Touca gives us the confidence to

develop new features faster and with

fewer problems."

10+ paying customers

100+ workflows continuously tested

1000+ unexpected regressions found

https://aurora.tech/

63 Aurora Innovation

A humbling journey

"Success is stumbling from failure to

failure with no loss of enthusiasm."
- Winston Churchill

touca.io/blog/touca-shutting-down

https://aurora.tech/
https://touca.io/blog/touca-shutting-down/

64 Aurora Innovation

Broken windows theory

“If a window in a building is broken and is left unrepaired, all the

rest of the windows will soon be broken. [...] Window-breaking

does not necessarily occur on a large scale because some areas are

inhabited by determined window-breakers, rather, one

unrepaired broken window is a signal that no one cares, and so

breaking more windows costs nothing.”

The Atlantic, 1982

No tool can address software quality issues more effectively than

fostering a culture of continuous improvement.
AI-generated

https://aurora.tech/
https://www.theatlantic.com/magazine/archive/1982/03/broken-windows/304465/

65 Aurora Innovation

Improving software quality

Culture

Teams need to foster ownership and

accountability for software quality.

reward continuous improvements and

actively share about technical debt.

Commitment

Teams need to commit to continued

investment in maintaining software

quality and continuously measure their

RoI by tracking developer productivity.

Education

Engineers need to understand their

product to know what to test, and learn

how to write tests that are fast to run,

cheap to maintain, and reliable to use.

https://aurora.tech/

66 Aurora Innovation

Improving team culture

Maintaining software quality is a collective effort.

Shift-left testing reduces development cost and improves efficiency.

Effective communication about software quality helps improve it.

Reward and promote continuous improvements.

Continuously measure developer experience and productivity.

https://aurora.tech/

67 Aurora Innovation

Proving business value

Continuously:

Measure developer experience and productivity.

Monitor changes to developer feedback cycles.

Track the effectiveness of existing testing practices.

Extract real-time insights about software development life-

cycle.

https://aurora.tech/

68 Aurora Innovation

Learning what to test

Good tests verify a system expectation that is prone to change.

Good tests are the ones that fail from time to time.

Good tests make efficient use of the resources they need.

Scope Confidence

By Etienne Jong

https://aurora.tech/
https://unsplash.com/@etien_nl

69 Aurora Innovation

Learning how to test

Expressive

Good tests are easy to read

and effective way of learning

business logic. Apply the

same code hygiene to your

tests as your production

code.

Scalable

Good tests are reusable.

Optimize for low per-input

execution cost. Prefer

writing test code with loose

assumptions about

individual test inputs.

Extensible

Good tests are easy to

change. Optimize for low

maintenance cost. Single

use-case test frameworks

have the same cost as

production code.

Measure test coverage in terms of verified business requirements.

https://aurora.tech/

70 Aurora Innovation

Learning when to run each test

Reliability Fast Feedback

Optimize for return on investment.

Avoid reusing paradigms of a specific test stage in others.

Leverage selective test execution for shorter feedback cycle.

Use periodic test execution for more confidence.

https://aurora.tech/

71 Aurora Innovation

Learning how to read code

Understand the business.

Learn code context and history.

Ask questions and share concerns.

Take ownership and accountability.

https://aurora.tech/

72 Aurora Innovation

Learning how to change code

Understand the system

Study the call-sites

Resolve unexpected use cases

Measure the impact

Mitigate surprises

Favor incremental rollout

Communicate your thought process

Share changes to expectations

“Take many more much smaller steps.” — GeePaw Hill

https://aurora.tech/

73 Aurora Innovation

Agenda

What is continuous regression testing

How does regression testing work in practice

How to build a regression testing system

Going beyond finding behavioral regressions

How to use regression testing effectively

Establishing a culture of safety at scale

https://aurora.tech/

74 Aurora Innovation

What we do matters

Unit and Integration Tests

Simulation Tests

Perception Scenarios

Hardware-in-The-Loop Tests

On-vehicle Tests

https://aurora.tech/

75 Aurora Innovation

Simulation Tests

60,000 CPUs utilized
each hour

6 million Simulation runs
per day

6 billion Equivalent miles
driven to date

https://aurora.tech/

76 Aurora Innovation

Virtual world-building

Simulating how sensors perceive

objective events in the world, helps

curate realistic rare-event scenario data

that are difficult, dangerous, or

expensive to acquire in the real world.

https://aurora.tech/

77 Aurora Innovation

Machine Learning

Data Selection

Data Labeling

Synthetic Data Generation

Model Training

Model Evaluation

https://aurora.tech/

78 Aurora Innovation

Safety Case Framework

Goal: Aurora's self-driving vehicles are acceptably safe to operate on public roads.

Proficient

The self-driving vehicle is
acceptably safe duration
nominal operation.

Fail-Safe

The self-driving vehicle is
acceptably safe in
presence of faults and
failures.

Continuously

Improving

Safety issues are resolved
with appropriate
corrective and
preventative actions.

Resilient

The self-driving vehicle is
acceptably safe in case of
misuse and unavoidable
events.

Trustworthy

The self-driving
enterprise is trustworthy.

https://aurora.tech/

79 Aurora Innovation

Conclusion

Fast feedback cycles improve developer experience and boost productivity.

Continuous regression testing facilitates changing software safely and with confidence.

Shift-left testing reduces development cost and improves efficiency.

Maintaining software quality requires fostering a culture of continuous improvements.

Ensuring software safety requires incorporating multiple software testing methods.

https://aurora.tech/

80 Aurora Innovation

Questions

pejman.dev / talks / cppcon23

github.com / trytouca / trytouca

touca.io / docs

https://aurora.tech/
https://pejman.dev/talks/cppcon23
https://github.com/trytouca/trytouca
https://github.com/trytouca/trytouca
https://touca.io/docs
https://touca.io/docs

81 Aurora Innovation

Appendix

https://aurora.tech/

82 Aurora Innovation

Data Capturing Internals

void touca::detail::check(const std::string& key, const data_point& value) {

 instance.check(key, value);

}

void Client::check(const std::string& key, const data_point& value) {
 if (has_last_testcase()) {

 _testcases.at(get_last_testcase())->check(key, value);

 }

}

void Testcase::check(const std::string& key, const data_point& value) {
 _resultsMap.emplace(key, ResultEntry{value, ResultCategory::Check});

 _posted = false;

}

https://aurora.tech/

83 Aurora Innovation

Data Serialization

Serializing User-Defined Types - Implementation

class object final {

 public:

 explicit object(std::string arg_name) : name(std::move(arg_name)), _v() {}

 template <typename T>

 object& add(std::string&& key, T&& value) {

 using type = typename std::remove_cv<typename std::remove_reference<T>::type>::type;

 _v.emplace(std::move(key), serializer<type>().serialize(std::forward<T>(value)));

 return *this;
 }

 /** ... */

 private:
 std::string name;

 std::map<std::string, data_point> _v;

}

https://aurora.tech/

84 Aurora Innovation

Data Submission

Serializing Test Cases

std::vector<uint8_t> Testcase::serialize(const std::vector<Testcase>& testcases) {

 flatbuffers::FlatBufferBuilder builder;

 std::vector<flatbuffers::Offset<fbs::MessageBuffer>> messageBuffers;

 for (const auto& tc : testcases) {
 const auto& out = tc.flatbuffers();

 messageBuffers.push_back(fbs::CreateMessageBufferDirect(builder, &out));

 }

 const auto& messages = fbs::CreateMessagesDirect(builder, &messageBuffers);

 builder.Finish(messages);
 const auto& ptr = builder.GetBufferPointer();

 return {ptr, ptr + builder.GetSize()};

}

https://aurora.tech/

85 Aurora Innovation

Data Submission

Serializing Data Points

std::vector<uint8_t> Testcase::flatbuffers() const {

 /** ... */

 std::vector<flatbuffers::Offset<fbs::Result>> fbsResultEntries;

 for (const auto& result : _resultsMap) {

 const auto& key = result.first.c_str();

 const auto& value = result.second.val.serialize(builder);

 fbsResultEntries.push_back(fbs::CreateResultDirect(builder, key, value));

 }

 /** ... */

}

flatbuffers::Offset<fbs::TypeWrapper> data_point::serialize(

 flatbuffers::FlatBufferBuilder& builder) const {

 return touca::detail::visit(data_point_serializer_visitor(builder), _value);

 }

)

https://aurora.tech/

